Bi - dimensional semantic scales : the embodied maps of meanings *
نویسنده
چکیده
r e s u M e n Osgood desarrolló el diferencial semántico para investigar los fenómenos desde la semántica y la percepción, y aplicamos su versión modificada para investigar temas actuales en ciencia cognitiva. Utilizamos dos dimensiones en lugar de un espacio unidimensional para posicionar palabras nominales y datos sujetos a escalamiento multidimensional (MDS). En el experimento 1 (papel y lápiz) participantes consideraron sustantivos concretos y abstractos en siete escalas de diferencial semántico bipolar en tres modalidades perceptuales: visual, auditivo y táctil. Seis meses más tarde, en el Experimento 2 (asistida por ordenador), los mismos participantes asignaron los mismos diez sustantivos en un subconjunto equilibrado de planos bidimensionales. Nuestros resultados apoyan la hipótesis de que el espacio semántico está limitado físicamente. Las calificaciones unidimensionales sobre MDS del Experimento 1 dieron como resultado una solución de dos dimensiones doi:10.11144/Javeriana.UPSY12-5.bdss Para citar este artículo: Milin, P., & Zdravković, S. (2013). Bi-dimensional semantic scales: the embodied maps of meanings. Universitas Psychologica, 12(5), 1547-1562. doi:10.11144/Javeriana.UPSY12-5. bdss * Acknowledgements: This research was supported by the Ministry of Education and Science, Grants No. 179033, 179006, and III47020. The authors would also like to thank Stevan Radojević, who developed the application for a computer web-based experiment, to Fernando Marmolejo Ramos, the editor of the special issue, to Robyn Groves for proofreading this manuscript, and to two anonymous reviewers for valuable suggestions. ** Department of Psychology, University of Novi Sad, Serbia. Laboratory for Experimental Psychology, University of Belgrade, Serbia. E-mail: petar. [email protected]. Researcher ID: K-60572013. *** Department of Psychology, University of Novi Sad, Serbia. Laboratory for Experimental Psychology, University of Belgrade, Serbia: E-mail: szdravko@f. bg.ac.rs. Researcher ID: K-7183-2013. Petar Milin, Sunčica Zdravković 1548 Un i v e r s i ta s Ps yc h o l o g i c a V. 12 No. 5 c i e n c i a c o g n i t i va 2013 particular. Esta combinación de dos dimensiones fue muy similar a uno de los mapas de dos dimensiones en bruto del Experimento 2. Se concluyó que este mapa particular de dos dimensiones es altamente informativo, ya que captura casi todas las diferencias entre las palabras en el conjunto dado de los opuestos perceptuales. Esta información demostró ser sólida a la administración experimental (papel y lápiz versus asistida por computador) y las orientaciones de la escala (horizontal y vertical). Teorías recientes, como la teoría del conocimiento perceptual de Barsalou, captura la tradición de la conceptualización del conocimiento como inherentemente perceptual. Nuestros resultados apoyan firmemente estas teorías. Palabras clave autores Espacio semántico, diferencial semántico, percepción multimodal, escalamiento multidimensional Palabras clave descriptores Teoría perceptual de conocimiento, ciencia cognitiva.
منابع مشابه
Understanding One Another: Making Out AI Meanings with Boolean Equations
Autonomous AI agents raise the issue of semantic interoperability between independently architectured and differently embodied intelligences. This paper offers an apporach to the issue that is close in spirit to the way humans make out meanings. Using a mathematical model of cognition, it is shown how autonomously developed conceptualizations can bootstrap and unravel each other’s meanings ad h...
متن کاملModeling Semantic Similarities in Multiple Maps
Models that represent words as points in a semantic space are subject to fundamental limitations of metric spaces. These limitations prevent semantic space models from faithfully representing, for example, the pairwise similarities between word meanings as revealed by word association data. In particular, semantic space models cannot faithfully represent intransitive pairwise similarities or th...
متن کاملSupervised Hyperspectral Image Classification Based on Spectral Unmixing and Geometrical Features
The spectral features of hyperspectral images, such as the spectrum at each pixel or the abundance maps of the endmembers, describe the material attributes of the structures. However, the spectrum on each pixel, which usually has hundreds of spectral bands, is redundant for classification task. In this paper, we firstly use spectral unmixing to reduce the dimensionality of the hyperspectal data...
متن کاملVerbs in Applied Linguistics Research Article Introductions: Semantic and syntactic analysis
This study aims to investigate the semantic and syntactic features of verbs used in the introduction section of Applied Linguistics research articles published in Iranian and international journals. A corpus of 20 research article introductions (10 from each journal) was used. The corpus was analysed for the syntactic features (tense, aspect and voice) and semantic meaning of verbs. The finding...
متن کاملFine-Grained Semantic Categorization across the Abstract and Concrete Domains
A consolidated approach to the study of the mental representation of word meanings has consisted in contrasting different domains of knowledge, broadly reflecting the abstract-concrete dichotomy. More fine-grained semantic distinctions have emerged in neuropsychological and cognitive neuroscience work, reflecting semantic category specificity, but almost exclusively within the concrete domain. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014